

SERVIZIO SANITARIO REGIONALE EMILIA-ROMAGNA Azienda Ospedaliero - Universitaria di Bologna

President: Pier Luigi Zinzani Co-President: Michele Cavo

MPNs in accelerated/blast phase Paola Guglielmelli

Bologna, Royal Hotel Carlton January 15-17, 2024

BOLOGNA BOLOGNA, ROYAL HOTEL CARLTON

Disclosures of Paola Guglielmelli

Company name	Research support	Employee	Consultant	Stockholder	Speakers bureau	Advisory board	Other
Novartis					x	x	
Abbvie					x	x	
GSK					x	x	
BMS					x	x	

Progression to Blast Phase in MPNs

- **Blast phase** is defined by the presence of \geq 20% blasts in either peripheral blood or bone marrow
- Accelerated phase is defined by 10-19% blasts and sometimes can precede BP; should be considered separately in prognostic data

10-year risk of leukemic progression:

- PMF 10% to 20% \rightarrow 30 % of causes of death
- PV 2% to 4% ET 1% 6 % of causes of death

Why post-MPNs Leukemia is Still a Challenge and an Unmet Need?

 Leukemogenic mechanisms not fully understood; data from NGS on paired (chronic and blast phase) do not display homogeneous patterns of transformation with different representation for recurrent gene mutations in published reports

MPN Blast Phase Molecular Genetics

 ✓ Over-representation for TP53, RUNX1, EZH2, ASXL1, IDH1/2 gene mutations

✓ Highly heterogeneous mutation profile at blast phase onset

Rare co-occurring mutations *DNMT3A - ASXL1 - TP53* suggests different mechanisms of transformation:

- ✓ TP53 o DNMT3A especially in AML post PV/ET
- ✓ ASXL1 in post MF

Models of Leukemic Transformation in MPN

✓ 2 main mutational *patterns* at transformation:

 Heterogeneous trajectories of transformation to BP from complex patterns of oligoclonal representation at chronic phase

Guglielmelli P et al, Blood; 2017:129:3227-3236; Klampfi T, Blood 2011; 118:167-76; ; Milosevic JD, Am J Hematol 2012 ; Milosevic and Kralovics, Int J Hematol 2013 Dunbar AJ, Rampal RK, Levine R. Blood. 2020;136(1):61. Calabresi L et al. Am J Hematol. 2023 Oct;98(10):1520-15

Why post-MPNs Leukemia is Still a Challenge and an Unmet Need?

- Leukemogenic mechanisms not fully understood; data from NGS on paired (chronic and blast phase) do not display homogeneous patterns of transformation with different representation for recurrent gene mutations in published reports
- Conventional prognostic risk model (age, Karyotype, ELN2022) fail to predict the pts outcome and a validated predictive model for AL progression is still lacking.

Risk Factors for Leukemia Transformation in MPNs

Risk Factors						
Clinical	 Age Anemia RBC-transfusion dependence Thrombocythopenia Thrombocythosis Cytopenic phenotype in MF 	 Leukocytosis PB blasts Prior thrombosis Weight loss Cytotoxic drugs High risk catgories (MIPSS70/plus; GIPSS) 				
Biological	 Circulating CD34⁺ cells (≥ 300/μl) Original diagnosis (consider ET <u>vs</u> pre-fibrotic MF) JAK2V617F VAF 					
Genetic	 Unfavorable Karyotype [monosomal karyotype, Chr17 abnormalities, Inv3/I(17q)] Gene mutations (Adverse mutations in PV/ET; HMR status in MF: IDH1, SRSF2, ASXL1, TP53,Ras Pathway) 					

Barbui T, JCO 2011; Passamonti F, Haematologica 2008 ; Tefferi A, Eur J Haematiol 2008; Gangat N, BJH 2007; Kiladijian JJ, Semin Thromb Hemost 2006; Finazzi G, Blood 2005;

Bjorkholm M, JCO 2011; Rago A et al. Leuk Res. 2015 Mar; 39(3):314-7; Passamonti F Am J Med 2004; Barosi G, Blood 2001; Morel P, Blood 2010; Passamonti F, BJH 2010; Tefferi A, BJH 2001; Tefferi et al. Blood Adv 2016; Guglielmelli P JCO 2018; coltro G et al BCJ 2022;

Why post-MPNs Leukemia is Still a Challenge and an Unmet Need?

- Leukemogenic mechanisms not fully understood; data from NGS on paired (chronic and blast phase) do not display homogeneous patterns of transformation with different representation for recurrent gene mutations in published reports
- Conventional prognostic risk model (age, Karyotype, ELN2022) fail to predict the pts outcome and a validated predictive model for AL progression is still lacking
- Median survival 3-6 months
- Often advanced age: just a minority of pts are eligible for intensive treatment.
- Available data mainly retrospective and on small groups of pts

Post-MPN AML demonstrates limited response to conventional AML therapy

- CR status at the time of conditioning regimen starting was associated with favorable outcome
- Blast-reduction strategies in MPN-AP/BP most commonly result in reversion to chronic phase MPN with significant residual disease burden.
- Mutations in *TP53* (OR 8.2 [95% CI 2.01, 37.1], p=0.004) and RAS pathway (OR 5.1 [95%CI 1.2, 23.7], p=0.03) were associated with inferior treatment response for intensively treated patients.

Kennedy JA et al. Blood 2013; Cahu X et al. Bone marrow transplantation 2014;49(6):756–60; McNamara CJ et al. Blood Advances 2018;2(20):2658–71; Davidson MB et al Blood Adv 2024...

Non Intensive Treatment Approach

Hypometilating agents

 Rationale for HMA in MPN-BP derived from the demonstrated efficacy in MDS and pauciblastic AML

✓ Complete responses generally scarce (about 10%) in blast phase

Study	Design	Subset	Treatment	Pt n	Outcomes
Andriani et al 2015	Retrospective	MPN-BP	AZA	19	OS 8 months
Badar et al 2015	Retrospective	MPN-BP	DEC	21	OS 7 months
Thepot et al 2010	Prospective	MPN-BP	AZA	26	ORR 38%; CR/CR1 12%
			• ·		

Potential therapeutic option in unfit patients

Addition of ruxolitinib to HMA Might Improves Response Rate

JAK inhibitor-including regimens	Study	Therapy	Response Rate	Overall Survival
Drummond et al 2020 ²²	Phase 1b study of 34 patients with MPN-AP (n=19) and MPN-BP (15)	Ruxolitinib + Azacitidine	MPN-AP CR/mCR rate: 26% MPN-BP ALR-P rate: 27%	1-y OS: 42%
Bose et al 2020 ²³	Phase I/II study of 29 patients with MPN-BP	Ruxolitinib + Decitabine	ORR: 45%	mOS: 6.9 mo
Mascarenhas et al 2020 ²⁴	Phase II study of 25 patients with MPN-AP/BP	Ruxolitinib + Decitabine	ORR: 44%	mOS: 9.5 mo

✓ Overall, limited single-center experiences and case reports

✓ Often patients evolved to BP upon ruxolitinib; feasible in combination with chemotherapy

No Apparent Benefit on OS from Venetoclax-Based Combinations in MPN-BP

Preclinical data provide rationale for clinical study: Bcl-xL expression is high in MPN cells; Sensitivity of AML cells to Venetoclax correlates positively with BCL-2 levels; Synergistic Targeting of Bcl-xL and JAK2 in JAK2-Driven MPN cells shows high apoptotic rate.

Venetoclax-containing regimens	Study	Therapy	Response Rate	Overall Survival
Tremblay et al ⁴⁰ Retrospective analysis of 9 patients with MPN-AP/BP		HMA-VEN	CR/CRi Rate: 33%	mOS: 4 mo
Gangat et al 2021 ⁴²	Retrospective analysis of 32 patients with MPN-BP (frontline and R/R treatment)	HMA-VEN	CR/CRi Rate: 44%	mOS: 8 mo
Masarova et al 2021 ⁴¹	Retrospective analysis of 31 patients with MPN-BP (frontline and R/R treatment)	VEN-including regimens	CR/CRi Rate: 23%	mOS: 4 mo
King et al 2021 ⁴³	Retrospective analysis of 27 patients with VEN-including reg MPN-AP/BP (frontline and R/R treatment)		ALR-C/CCR Rate: 37%	MPN-BP mOS:: 6 mo MPN-AP mOS: 3.6 mo
Overall Surviva	II, FL vs R/R pts med OS 7 mos, 6-12 mos OS: 57% - 29% 17, med OS 3 mos, 6-12 mos OS: 29% - 6% • Med OS 7 months for FL • Med OS 3 months for R/R		 DAC single, N 17, died DAC-RUX, N 24, died 2 DAC-VEN, N 8, died 5, 	17, med OS 7 mos 1, med OS 6 mos med OS 9 mos
	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		20 30 40	50 60
1101			time (months)	

Adapted from Patel AA and Odenike O. Clinical Lymphoma, Myeloma and Leukemia 2023

Targeted IDH1/2 Inhibitor-based Treatments in IDH1/2-Mutated post-MPN AML Patients

IDH inhibitor-including regimens	Study	Therapy	Response Rate	Overall Survival
Patel et al 2020 ²	Retrospective analysis of 8 patients with IDH2-mutated MPN-AP/BP (frontline and R/R treatment)	Enasidenib- including regimens	ORR: 37.5%	NR (median follow-up 9 mo)
Chifotides et al 2020 ³	Retrospective analysis of 12 patients with IDH1 or IDH2-mutated MPN-BP (frontline and R/R treatment)	IDH inhibitor-including regimens	CR Rate: 25%	mOS: 10 mo
Bar-Natan et al, 2022 ⁵⁵	Ongoing phase II study of 5 patients with IDH2-mutated MPN-AP/BP	Ruxolitinib + Enasidenib	CR Rate: 40%	Not reported

Targeted TP53-based Treatments

- MDM2i (Navtemadlin KRT232) demonstrated clinical activity in a phase Ib dose escalation study in TP53 WT patients with MPN BP (GI toxicity)
- Ongoing: multicenter phase Ib/II study in patients with R/R AML (including those with MPN-BP) as Navtemadlin in monotherapy and in combination with LDAC or decitabine

Suggested Management of Accelerated or Blastic Phase Disease

* Includes transfusion support, count control with hydroxycarbamide or alternatives, symptom control and palliative care. AP= accelerated phase; BP= blast phase; JAKi = JAK inhibitor; IDH= isocitrate dehydrogenase CRIMM-Center Research and Innovation of Myeloproliferative Neoplasms Florence

Thanks to and acknowledgement of: CRIMM team and patients Italian and International colleagues AIRC support

@: crimm@aou-careggi.toscana.it

